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1Departamento de Ingenierı́a Térmica y de Fluidos, Universidad Carlos III de Madrid, Avda. de la

Universidad 30, 28911, Leganés, Madrid, Spain
fjrodriguez@ucsd.edu
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The breakup process of a drop or a bubble immersed in a straining flow at high
Reynolds numbers, is studied numerically with the aim at comparing the breakup
frequencies obtained with those measured in real flows. We assume that both the
inner and the outer velocity fields are axisymmetric and irrotational. Under these
assumptions the time evolution of the drop’s interface is computed with a boundary
integral method for a wide range of the inner-to-outer density ratios, Λ. Despite
the simplicity of the model, it qualitatively displays some of the features of the
turbulent breakup of drops and bubbles observed experimentally. Furthermore, when
Λ ∼ O(1), the slender geometry of the droplets observed in the numerical simulations
suggests the use of a simplified theoretical analysis that reproduces accurately the
time evolution of the drop radius obtained numerically.

1. Introduction
Although desirable, numerical simulations of the turbulent breakup of drops and

bubbles would be extremely expensive in terms of computing time owing to the wide
range of length scales and unsteadiness that characterizes turbulence, in addition
to the intrinsic difficulty of accounting for the presence of highly distorted three-
dimensional free surfaces within the computational domain. As a first simplification,
we propose a model that, retaining some important physical aspects of turbulent
breakup, may help to understand the complexity of the process. The leading ideas
are suggested by a careful examination of high-speed video images similar to those
depicted in figure 1 and 2, taken from the experiments described in Rodrı́guez-
Rodrı́guez (2004) and Eastwood, Armi & Lasheras (2004), respectively. The pictures
illustrate the morphology of the turbulent breakup of a bubble and a heptane drop
under well-controlled experimental conditions. Analysis reveals that the bubble in
figure 1(a, b), whose initial shape is roughly spherical, is elongated in a preferential
direction in figure 1(c, d). Finally, the breakage takes place sometime between figures
1(e) and 1(f ), when the aspect ratio of the bubble is about 2.4. Similarly, figure 2

† Present address: Área de Mecánica de Fluidos. Departamento de Ingenierı́a Mecánica y Minera,
Universidad de Jaén, Campus de las Lagunillas, 23071, Jaén, Spain; cmbazan@ujaen.es
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(d) (e) ( f )

Figure 1. High-speed video images, recorded at 1000 f.p.s., of the slender breakage of an air
bubble injected at the centreline of a turbulent water jet. Here, the diameter of the bubble
is 2 a0 = 2.5mm, the dissipation rate of turbulent kinetic energy is ε = 62 m2 s−3, providing a
Reynolds number Re � 780 and a mean Weber number 〈We〉 � 10, following the definition
given by equation (3.2).

shows that the initially round heptane drops deform into slender ligaments before
pinching-off. Therefore, the kind of breakup process displayed in figures 1 and 2 can
be classified, according to the classical work of Hinze (1955), as a cigar shaped type
of breakup. The observation of these images allows us to infer that the particle breaks
up because of its interaction with turbulent eddies of the same size which stretch the
particle before breaking up, as already indicated in the Kolmogorov–Hinze theory
(Kolmogorov 1949; Hinze 1955). The observed stretching implies that there is a
preferential direction along which deformation occurs and, thus, the breakup process
can be assumed to be, in a first approximation, axisymmetric.

To further simplify the problem, we will consider that the particle is moving at the
local mean fluid velocity and that its characteristic size, a0, lies within the inertial
subrange of the turbulent energy spectrum. This condition ensures that the Reynolds
number based on the outer fluid properties of the flow surrounding the particle is
sufficiently large for us to neglect viscous effects. Furthermore, in the case of droplets,
we will also assume that the inner-to-outer kinematic viscosity ratio is, at the most,
of order unity, indicating that the Reynolds number of the inner flow is also large.
For instance, in figure 1, the Reynolds number based on the mean velocity difference
between two points separated by a distance of the order of the particle radius, u′(a0), is
Rea0

= u′(a0)a0/ν ≈ 780. Similarly, that of figure 2, where the inner-to-outer kinematic
viscosity ratio is 0.88, is Rea0

≈ 500. Finally, an additional simplification adopted here
will be to consider that both the inner and the outer flows are irrotational. Although
strictly speaking the analysis of the instantaneous velocity field surrounding the
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Figure 2. Breakup of a heptane droplet of 1.65 mm diameter immersed in a turbulent water
flow. Here, the dissipation rate of turbulent kinetic energy is ε =84m2 s−3, yielding for the
Reynolds and mean Weber numbers the values Re � 500 and 〈We〉 � 10, respectively. It can
be observed that the drop is stretched, becoming a slender ligament in (c) before it breaks in
(d). Images taken from the experiments described in Eastwood et al. (2004).

particle in real turbulent flows indicates that vorticity may not be negligible (Chong,
Perry & Cantwell 1990; Perry & Chong 1993), as a first approach to the problem,
in this work we will consider only the symmetric part of the velocity-gradient tensor
(strain-rate tensor). Note that the strain-rate tensor assumed here properly models the
outer flow as a stable focus, which is the most likely structure of the instantaneous
velocity field in turbulent flows (Chong et al. 1990; Perry & Chong 1993). A more
detailed analysis including the rotational tensor is left for a future work already in
progress.

The description of the main features of the turbulent breakup of drops and bubbles
using the potential flow approximation has been previously used by a number of
authors. Shreekumar, Kumar & Gandhi (1996) studied the influence of a turbulent gas
field on the breakup of a liquid drop, and modelled the turbulent velocity fluctuations
as an unsteady pressure distribution along the drop surface. Kang & Leal (1987)
considered the deformation of a bubble immersed in an uniaxial straining type of
flow both at finite Reynolds numbers and under the potential-flow approximation.
Although these authors find the critical Weber number above which no steady
solutions exist imposing an outer flow similar to that adopted here, they do not
provide the breakup time dependence on the parameters of the problem. Moreover,
the interaction of a bubble with a turbulent structure has been considered by Higuera
(2004), who studied the deformation of a gas bubble induced by the action of a vortex
ring as a simple approach to model the bubble–turbulence interaction. In accordance
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Figure 3. Sketch of the flow field under investigation. Here, r̃ and z̃ indicate the dimensional
radial and axial coordinates.

with the Kolmogorov–Hinze hypothesis, Higuera (2004) concludes that the most
efficient eddies are those whose size is similar to that of the particle. However, the
breakup times obtained in his study strongly depend on the initial position of the
vortex core and, unfortunately, this work does not supply significant information
about the real dependence of the breakup time on the parameters of the problem. On
the other hand, the numerical results presented here will provide the time evolution of
the interface of an initially round immiscible particle, deformed owing to the action of
a steady, axisymmetric and hyperbolic type of flow (figure 3). As already mentioned,
the axisymmetry of the imposed outer velocity field is motivated by experimental
observations similar to those depicted in figures 1 and 2, where the particle’s interface
is elongated in a preferential direction. Similarly, figures 1 and 2 also suggest that
the particle breaks owing to its interaction with a single turbulent structure whose
characteristic turnover time is larger than the breakup time; hence, the additional
simplification of considering the outer flow as steady is satisfied.

The paper is structured as follows. In § 2, both the formulation of the equations
and boundary conditions governing the free-surface potential flow under study and
the description of the boundary-element numerical method used to solve them is
provided. Results concerning bubble breakup are discussed and compared with some
experimental data in § 3, whereas the drop breakup problem and the analysis of the
slender simplified model is left to § 4. Finally, conclusions are presented in § 5.

2. Problem formulation and numerical method
We will describe the time evolution of the interface of an immiscible drop (bubble)

of density ρi and initial radius a0, immersed into an infinite volume of a different fluid
of density ρe. As stated before, we will consider that the drop (bubble) is moving at the
local mean velocity of the flow and that both inner and outer flows are irrotational. In
a frame of reference moving at the particle’s velocity, the outer velocity field far from
its interface is the hyperbolic, axisymmetric and steady flow given by the following
dimensional velocity potential,

Φe =
M

a0

(−r̃2 + 2z̃2), (2.1)
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Figure 4. Definition of the variables used in the numerical method. Here, r̃ and z̃ indicate
the dimensional radial and axial coordinates.

where M is the flow intensity and (r̃ , z̃) are the radial and axial coordinates,
respectively. A sketch of the suggested flow configuration is given in figure 3. Scaling
the distances, times and densities with a0, a0/8M and ρe respectively, the dimensionless
equations governing the inner and outer potential flows are

∇2φ(i,e) = 0, (2.2)

Λ

(
∂φi

∂t
+

|∇φi |2
2

)
+ pi = P0i ,

∂φe

∂t
+

|∇φe|2
2

+ pe = P0e, (2.3)

where the subscripts (i, e) refer to the inner and external fluid, respectively. Here,
(2.2) are the Laplace equations for the velocity potentials φi,e, (2.3) are the Bernoulli
equations and Λ = ρi/ρe. Moreover, P0(i,e) are functions of time which, in this problem,
can be set to zero since they can be included in the definitions of φ(i,e) without affecting
the velocity fields. The solution to equations (2.2) and (2.3) must be axisymmetric

∂φ(i,e)

∂r
= 0 at r = 0, (2.4)

and solved subjected to the following boundary conditions

φe → φe∞(r, z) = −r2/8 + z2/4 for (r, z) → ∞ (2.5)

and

pi − pe =
1

We
∇ · ni , (2.6)

∂φi

∂ni

= −∂φe

∂ne

, (2.7)

at the surface of the drop (bubble). In equation (2.7), ni and ne are the inner and
outer coordinates normal to the interface (figure 4), and We= ρe(8M)2a0/σ is the
Weber number based on the drop’s (bubble’s) radius a0, the outer flow characteristic
velocity 8M , and interfacial tension coefficient, σ . The time evolution of the particle’s
interface will be obtained by solving equations (2.2)–(2.7) with the boundary integral
method described in the following subsection.

2.1. Numerical method

Free-boundary problems with large-amplitude or other non-trivial surface deforma-
tions generally require a numerical solution. To date, most of the solutions have
focused on cases where only the dynamics of a single phase was important (e.g. an
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oscillating gas bubble in water), however, in this paper we will consider the dynamics
of two contiguous fluid domains. The basic ideas are similar to those exposed in a
recent study of Leppinen & Lister (2003), who studied the dynamics near pinch-off
using an alternative integral representation to the one described here. As a starting
point, let us consider the Green’s identity, which applied to both fluids provides
integral equations for the velocity potentials φ(i,e) at any given point X = (R, Z) on a
smooth surface as a function of the potential distribution and its normal derivative
to the surface, ∂φ(i,e)/∂n(i,e),

φ(i,e)(R, Z) = ψ(i,e)(R, Z) +

∫
Γ

g̃(i,e)

∂φ(i,e)

∂n(i,e)

ds −
∫

Γ

h̃(i,e)φ(i,e) ds, (2.8)

being ψi(R, Z) = 0 and ψe(R, Z) = 2φe∞(R, Z) = −R2/4+Z2/2. To derive this equation,
axisymmetry has been assumed and integration along the azimuthal variable has been
performed. Therefore, integrals in (2.8) are line integrals along a meridian of the free
surface, denoted by Γ , s being the arclength (see figure 4). Note also that, as indicated
in figure 4, normal vectors n(i,e) are directed away from the inner/outer fluid domains.

Kernel functions g̃ and h̃ in (2.8) are given by,

g̃(i,e) =
2r

πÃ1/2
K(m̃),

h̃(i,e) =
2rE(m̃)

πÃ1/2

[
nr

(i,e)

2r
+

(R − r)nr
(i,e) + (Z − z)nz

(i,e)

B̃

]
−

K(m̃)nr
(i,e)

πÃ1/2
,


 (2.9)

where K(m̃) and E(m̃) are the elliptic functions of the first and second kind,
respectively,

Ã = (R + r)2 + (Z − z)2 , B̃ = (R − r)2 + (Z − z)2 , m̃ =
4rR

Ã
, (2.10)

and nr
(i,e), nz

(i,e) are the projection of the normal vector to the inner (i) and outer (e)
fluid boundaries in the radial (r) and axial (z) direction (see figure 4). Since both
fluids share the same boundary, ni = −ne, indicating that

g̃e = g̃i , h̃e = −h̃i . (2.11)

The time evolution for the potentials φ(i,e) is provided by the Bernoulli equations
(2.3). Note first that the material derivative of φ(i,e) along the normal to the surface
(Dn/Dt) is simply

Dnφ(i,e)

Dt
=

∂φ(i,e)

∂t
+

(
∂φ

∂n

)2

. (2.12)

Defining the difference function

ϕ = φe − Λφi, (2.13)

equations (2.3) can be combined with the normal stress balance (2.6) to yield,

Dnϕ

Dt
=

1

We
∇ · ni + 1

2
(1 − Λ)

(
∂φ

∂n

)2

− 1
2

[(
∂φe

∂s

)2

− Λ

(
∂φi

∂s

)2
]

. (2.14)

Here, ∂φi/∂s and ∂φe/∂s are the derivatives along the free surface of the inner
and outer potentials, respectively. In (2.12) and (2.14), we have used the free-surface
kinematic condition (2.7) and we have omitted the subscript (i, e) when the result is
independent of the use of the inner or outer variables.
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The discretization of the integrals was performed as in Oguz & Prosperetti (1989,
1993) where the free-surface coordinates R and Z, the potentials φ(i,e) and their normal
derivative ∂φ(i,e)/∂n(i,e), are defined at discrete boundary points. Quartic splines taking
the arclength s as the spline parameter were used to interpolate the values of (R, Z)
(Day, Hinch & Lister 1998). Furthermore, spline interpolation was also employed to
calculate both the normal vectors and tangential derivatives, ∂/∂s, of the potentials
φ(i,e). We also assumed that the unknowns of equation (2.8) varied linearly between
nodal points in order to transform the integral equation into an algebraic linear
system. Integrals in (2.8) were calculated by adding the contribution along each
segment formed between two consecutive nodal points. The elliptic functions E(m̃)
and K(m̃) were evaluated using the explicit formulae, with errors O(10−8), provided
in Abramowitz & Stegun (1970). The logarithmic singularity, which was introduced
in the kernels g̃ and h̃ owing to the presence of the elliptic function K(m̃), was
handled by finding an explicit expression for the logarithmic terms. After doing this,
regular integrals were computed using the six-point Gauss–Legendre formula, while
integrals containing logarithms were evaluated as described in Oguz & Prosperetti
(1989). Therefore, computing ∂φ(i,e)/∂n(i,e) from equation (2.8) was reduced to solving
the following linear system(

I + H(i,e)

)
Φ (i,e) ≡ H (i,e)Φ (i,e) = Ψ (i,e) + G(i,e)

∂Φ (i,e)

∂n(i,e)

, (2.15)

where each of the elements of the vectors Φ (i,e), Ψ (i,e) and ∂Φ/∂n represent, respec-
tively, the values of φ(i,e), ψ(i,e) and ∂φ/∂n at each nodal point, while H and
G are the matrices corresponding to the discretization of the integral operators
of equation (2.8). In the implementation reported here, the nodal points of both the
inner and outer fluids are placed at the same X = (R, Z) coordinates. Consequently,
the addition of the equations corresponding to the inner and outer fluids in equation
(2.15) leads to

HiΦ i + HeΦe = 2Φe∞ ⇒ (Hi + ΛHe)Φ i = 2Φe∞ − Heϕ, (2.16)

where use of the definition of ϕ in (2.13) and of equations (2.11) and (2.7), has
been made. Once equation (2.16) has been deduced, the numerical algorithm is
straightforward. The value of ϕ at a certain time step is worked out through (2.14).
Then, the values of Φ i and Φe are obtained from (2.16) and (2.13), respectively. On
the other hand, the normal velocity is determined from one of the equations (2.15)
using the already calculated value of Φ i . The positions of the free-surface nodal
points are advanced in time by moving them normal to the interface, so that for each
node, we use the equations

dR

dt
= nr

i

∂φi

∂ni

,
dZ

dt
= nz

i

∂φi

∂ni

. (2.17)

Then, equation (2.14) allows us to advance in time with ϕ and the cycle begins again.
The temporal integration was performed using an explicit standard, adaptive fourth-
order Runge–Kutta scheme. This scheme was chosen to solve properly the final stages
before pinch-off occurs. In order to avoid the growth of high-frequency waves at the
free surface, the different discrete functions were fast Fourier transformed at each time
step and the higher modes eliminated; moreover, the nodal points were rearranged in
order for them to be equispaced (Oguz & Prosperetti 1989, 1993). The linear system
of algebraic equations (2.15)–(2.16) was solved using the LU decomposition method.
As a validation test for the numerical procedure, the frequency of small oscillations
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Figure 5. Time evolution of the breakup process of an air bubble in water (Λ= 1.2 × 10−3)
for different values of the Weber number. (a) We= 1.0, (b) We= 2.19, (c) We = 10.0 and
(d) We → ∞.

of a nearly spherical drop was obtained for different values of Λ, and compared with
the analytical results given by Lamb (1932). Using 65 nodes, the relative error was,
for any value of Λ, always less than 0.5 % for the second mode of oscillation and
less than 2% for the fourth. Clearly, this error could be reduced if more nodal points
were added. Therefore, we considered this test validated the proposed scheme.

3. Bubble breakup
The first problem, considered in this section, is the study of the breakup of a gas

bubble immersed in an inviscid liquid flow. Note that, in this case, the density ratio
is much smaller than unity, Λ  1, and the only parameter governing the problem is
the Weber number, We. Numerical simulations of the time evolution of the bubble’s
interface, performed for a wide range of Weber numbers, show that there are two
different scenarios depending on the value of We. For Weber numbers smaller than the
critical one, Wec = 2.3, the bubble oscillates indefinitely without breaking up. However,
when We >Wec, the bubble splits into two fragments. The time evolution of the bubble
for two subcritical cases (We= 1.0 and We =2.19) is displayed in figures 5(a) and 5(b),
respectively. Although in both cases the bubble oscillates indefinitely, the amplitude
of the oscillations increases noticeably as the Weber number approaches Wec.

On the other hand, when We > Wec, the breakup morphology no longer depends on
the Weber number, and the bubble always splits into two fragments (figures 5c and 5d).
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Figure 6. Dependence of the dimensionless breakup time of bubbles, tb , on the
Weber number.

This result is in agreement with previous experimental observations reported by
Risso & Fabre (1998), Martı́nez-Bazán, Montañés & Lasheras (1999a , b) and
Rodrı́guez-Rodrı́guez, Martı́nez-Bazán & Montañés (2003) among others. In fact,
these authors concluded that breakup patterns leading to more than two fragments
were rarely observed for moderately high Weber numbers. It can also be observed
in figures 5(c) and 5(d), that the aspect ratio of the deformed bubble decreases for
increasing Weber numbers owing to the fact that the time that the outer liquid flow
has to separate the bubble ends decreases.

Notice that our simulations indicate that bubbles only break if the inertia of the
outer fluid is sufficiently large to overcome the surface tension confinement stresses,
We >Wec. However, the coherent interaction of unsteady vortical structures with the
bubble can also break it even if We <Wec. This is caused by a succession of subcritical
stretches that might increase the surface energy in this non-dissipative system, and
can eventually lead to bubble breakup in subcritical flows (see Kang & Leal 1990;
Risso & Fabre 1998). Consequently, the abrupt transition from permanent oscillation
to bubble breakup obtained in our simulations is a consequence of the steadiness of
the outer fluid flow adopted here. Despite this limitation, it will be shown that our
approach is realistic, in the sense that it is able to reproduce the breakup frequencies
in some experiments.

The dependence of the dimensionless breakup time on the Weber number, tb(We),
has been represented in figure 6. This figure shows that tb → ∞ as We → Wec and that,
for sufficiently high Weber numbers, tb tends to a constant value. This asymptote is in
accordance with the fact that, since surface tension effects are negligible in this limit,
the only relevant time scale of the problem is the convective one. The function tb (We)
has also been compared with experimental measurements of the breakup frequency
of bubbles immersed in a turbulent and isotropic flow performed by Martı́nez-Bazán
et al. (1999a) and Rodrı́guez-Rodrı́guez (2004) in different facilities. To compare the
numerical results with the experimental measurements properly, it is necessary to
provide a definition of the experimental Weber number consistent with that adopted
in our model. To define the Weber number, We = ρe(8M)2a0σ

−1, we have selected the
characteristic velocity, �u = 8M , given by the velocity difference between the points
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Figure 7. Comparison of the predicted breakup frequency (solid line) with the experimental
measurements reported by Martı́nez-Bazán et al. (1999a) (circles) and Rodrı́guez-Rodrı́guez
(2004) (squares) for air bubbles of a0 ≈ 1.38mm and a0 ≈ 2.00 mm, respectively. In both
experiments, the bubbles were injected at the axis of a submerged water jet. The dashed line
corresponds to the breakup frequency given by equation (3.5).

z = ±a0 at the bubble axis. In a turbulent isotropic flow, this difference of velocity
may be estimated as (Batchelor 1953),

〈�u2〉 = CKε2/3 (2a0)
2/3 , (3.1)

where ε is the dissipation rate of turbulent kinetic energy per unit mass and CK = 2.13
is a numerical constant taken from Sreenivasan (1995). Thus, the turbulent Weber
number can be given by,

〈We〉 = 3.38ρeε
2/3a

5/3
0 σ −1. (3.2)

Similarly, since we are considering bubbles whose characteristic size lies within the
inertial subrange of the turbulent energy spectrum, a proper scale for the convective
time is given by

tc ∼ ε−1/3a
2/3
0 . (3.3)

Consequently, the experimental dimensionless frequency, g∗, may be defined as

〈g∗〉 = 〈g〉ε−1/3a
2/3
0 = 1/ (βtb) , (3.4)

where g is the experimentally measured dimensional breakup frequency and β is
an order unity constant that arises from the definition of the convective time in
(3.3). To check if the model studied here is able to capture the mechanisms involved
in the turbulent breakup of bubbles, we have plotted both the experimental data
(symbols) and the numerical results (solid line) in figure 7. Notice the good agreement
between the experimental measurements and the numerical results for the entire
range of Weber numbers explored here, with only an order unity constant β = 2.36
to be adjusted. Furthermore, using equations (3.1) to (3.3) to make dimensionless the
breakup frequency model proposed by Martı́nez-Bazán et al. (1999a) in their equation
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(4.8), we obtain the following analytical expression,

〈g∗〉 =
1

β

√
1 − Wec

〈We〉 . (3.5)

The model for the breakup frequency given by equation (3.5) is a generalization of the
phenomenological model for the breakup of a bubble in a turbulent flow proposed by
Martı́nez-Bazán et al. (1999a, b). The main idea underlying this equation is that the
breakup time (inverse of the breakup frequency) can be obtained using dimensional
analysis. A time scale can be built with the density of the continuous phase, the radius
of the bubble and the difference between the turbulent pressure fluctuation and the
surface tension stresses, this difference being a measure of the energy available in the
flow to split the bubble. The breakup frequency given by equation (3.5) has also been
represented in figure 7 in the dashed line with Wec = 2.3. Note that the model agrees
well with the numerical and the experimental results and, therefore, (3.5) can be used
as an alternative expression to determine the bubble breakup frequency in practical
applications.

In this section, we have provided a numerical model whose results compare fairly
well with experiments even in the case of moderate Weber numbers. Thus, if in any
particular case, the Weber number is consistently defined and the bubble size lies
within the inertial subrange, the breakup time can be determined by means of this
approach, avoiding the consideration of the more complex aspects of the flow.

4. Drop breakup
After the description of the breakup process of bubbles, in this section we will focus

on the study of the effect of both the density ratio and the Weber number on the
breakup of light drops, Λ � 1, at high Reynolds numbers. Unlike its low-Reynolds-
number counterpart, the theoretical analysis of this problem has been overlooked in
the literature in spite of its relevance for practical purposes. A comprehensive review
of the literature about the deformation and breakup of drops subjected to a straining
flow at zero Reynolds number is given by Stone (1994). The low-Reynolds-number
breakup of drops of characteristic length smaller than the Kolmogorov scale has been
studied by Cristini et al. (2003) in isotropic turbulent flows.

The main feature of the breakup process of light droplets given by our model is that
two drops form symmetrically at both tips of an intermediate ligament (see figures 8a
and 8d). It can also be observed that the form of the breakup near the pinch-point
is that of a dimple/depression on a sphere (see Day et al. 1998; Leppinen & Lister
2003). Consequently, rather than a binary breakup observed for bubbles, droplets
exhibit a tertiary breakup whenever the Weber number is higher than a critical value.
The size of the central ligament strongly depends on both the Weber number and
the density ratio. Figures 8(a) and 8(c), indicate that when the Weber number is
slightly higher than the critical one, the drop breaks into two big daughter droplets
and a small satellite. However, for larger values of the Weber number, two different
scenarios may appear: at low values of Λ the volume of the satellite still remains
small (see figure 8b), whereas if the density ratio is close to unity, Λ ∼ O(1), the
drop elongates considerably, generating a slender ligament whose length, l, is much
larger than its radius, a, l/a � 1, by the time it breaks (see figure 8d). This last type
of breakup pattern has also been experimentally observed in the turbulent breakup
of heptane drops (Λ � 0.7) at high Reynolds numbers. As an example, figure 2,
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Figure 8. Time evolution of the breakup process of a drop for different values of the We
and Λ. (a) We = 3.0 and Λ= 0.20, (b) We= 10.0 and Λ= 0.20, (c) We= 3.0 and Λ= 0.80,
(d) We= 10.0 and Λ = 0.80. In the last case, only half of the droplet is shown.
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Figure 9. Dependence of the breakup time, tb , on Λ for several values of We.

taken from Eastwood et al. (2004), shows how a heptane droplet is stretched by
the surrounding flow until it is long enough to develop a capillary pinch-off of the
ligament. The similarity between experimental and numerical observations lead us
to the conclusion that the elongation prior to the subsequent breakup of the drop
is driven by inertial and surface-tension forces. Thus, although viscous effects may
affect the breakup frequency (Eastwood et al. 2004), the large elongation suffered by
the droplets can be attributed to the inner fluid inertia.

Figure 9 shows the dependence of the breakup time, tb, on Λ for several values
of We. It can be seen that, since for sufficiently high values of the Weber number
the relevant time scale of the problem is the convective one, the dependence of tb on
We is very weak when We � 5. This figure also depicts an almost linear dependence
of tb on Λ. Figure 10 shows the dependence of the critical Weber number on Λ,
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indicating that as the density of the inner fluid increases, the outer fluid inertia must
also increase to split the particle.

However, unlike in the case of bubbles, the droplets elongate owing to their
interaction with the outer flow and adopt the form of a long ligament that turns
around itself, as displayed in experiments reported by Eastwood et al. (2004). Thus, the
length of the ligament may become larger than the integral scale of the surrounding
turbulent flow (or equivalently much larger than the breaking eddy) before it breaks
(see figure 8d). This implies that, in those situations, the local velocity field given
by equation (2.1) no longer applies, invalidating the approach considered here and
the characteristic time of the problem given by (3.3). Also, as discussed in Eastwood
et al. (2004), the inner fluid viscosity, not included in our model, plays an essential
role during the latest instants of drop breakup. In view of these results, it can be
concluded that, although our numerical approach is not appropriate for predicting
either the experimentally measured breakup frequency or the critical Weber number, it
qualitatively reproduces the observed breakup patterns. Thus, the following analytical
model has been developed to describe the time evolution of a droplet before it breaks.

4.1. Analytical model for the time evolution of slender drops and analysis of the local
behaviour near pinch-off of drops

As shown in figure 8(d), after a short initial transient, the drop deforms into a slender
ligament whose radius, a(t), slowly varies along the z-axis, except in a region close
to the ends. These numerical (and experimental) observations suggest modelling the
drop as a constant volume cylinder whose radius, a(t), and length, l(t) vary with time.
Under this assumption, the solution of the Laplace equations (2.2) subjected to the
boundary conditions (2.4), (2.5) and (2.7), gives the following inner and outer velocity
fields

φe,r = 1
4

(
− r +

a(t)2

r

)
+

a(t)ȧ(t)

r
, φe,z = 1

2
z for r > a(t), (4.1)

φi,r =
ȧ(t)

a(t)
r, φi,z = −2ȧ(t)

a(t)
z for r < a(t). (4.2)

In equations (4.1)–(4.2), the subscripts r and z indicate partial derivation with respect
to the radial (r) and longitudinal (z) coordinates, respectively. Notice that the normal
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Figure 11. Time evolution of the ligament’s aspect ratio obtained from numerical simula-
tions for different values of Λ and We together with the evolution given by equation (4.5).

stress jump condition,

pi (r = a, z, t) − pe (r = a, z, t) =
1

We a(t)
, (4.3)

imposes that the pressure difference across the interface, pi − pe, does not depend on
z. Hence, substituting the velocity fields (4.1)–(4.2) into equations (2.3), and equating
to zero the z-dependent term that results from subtracting the two Bernoulli equations
(2.3), we obtain the following equation for a(t)

ä

a
− 3

ȧ2

a2
+

1

8Λ
= 0. (4.4)

In terms of the scaled variable, τ = t/
√

Λ, the solution of equation (4.4) subjected to
the initial conditions a(τ = 0) = 1, da/dτ (τ = 0) = a′

0 yields,

a(τ ) =

√
2 exp (−τ/4)√

(1 + 4a′
0) exp (−τ ) + (1 − 4a′

0)
. (4.5)

This simple model has been validated by comparing the time evolution of the drop
aspect ratio l/a = 1/a3, where a(τ ) is given by equation (4.5), with that obtained from
our simulations. Figure 11 shows that the numerical results, obtained for a wide range
of We and Λ, closely follow the analytical prediction with a′

0 = −0.19. The freedom
in the choice of the initial condition a′

0 comes from the non-slender geometry of the
droplet during the initial stages of the breakup process.

Equation (4.4) is a generalization of a previous equation proposed by Frankel &
Weihs (1985), who studied a similar problem to that considered where, unlike in our
case, the outer fluid inertia was neglected. Indeed, letting Λ → ∞ in (4.4), gives

a(t) =
a0√

αt + 1
, (4.6)

which coincides with the solution already obtained by Frankel & Weihs (1985).
The result shown in figure 11 also indicates that the stretching time scales with the

square root of Λ, a dependence that results from the balance between inner to outer
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Figure 13. Final collapse of the neck for a fixed Weber number and different values of Λ.
Notice that the inertial stage of the collapse increases with Λ.

fluid inertia: ρiäa ∼ ρe(8M)2. However, note that as indicated above, the breakup time
depends almost linearly on Λ (see figure 9). This different trend may be explained
by noticing that the breakup process can be divided into two separated stages: an
inertial stage, in which the drop stretches as described by the previous model, and a
capillary-driven pinch-off, similar to that proposed by Leppinen & Lister (2003) and
Day et al. (1998). Figure 12 shows the evolution of the radius of the neck that forms
when the ligament begins to collapse. As displayed in this figure, the capillary-driven
stage is much shorter than the inertial one. Consequently, if the transition between
both regimes occurred always at a fixed, dimensionless time τc, independent of Λ, the
breakup time would scale as Λ1/2. However, as depicted in figure 13, τc increases with
Λ explaining the differences between the scaling of the stretching and the breakup
processes.
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Figure 14. Evolution of the neck radius for several values of We and Λ showing that it
follows the two-thirds law proposed by Day et al. (1998) and Leppinen & Lister (2003).

Moreover, to show that our numerical code describes the final stages of pinch-off
properly, we have represented in figure 14 the evolution of the radius of the neck of
drops [Λ ∼ O(1)] with tb − t , where tb is the breakup time. This figure shows that, in
agreement with the results provided in Chen & Steen (1997), Day et al. (1998) and
Leppinen & Lister (2003), rneck ∝ (tb − t)2/3 which constitutes an additional proof of
the accuracy of the present numerical code to simulate the potential two-phase flows
considered in this paper.

As a final remark, note that drop dynamics near pinch-off is universal, in the
sense that breakup at those scales is governed by a local balance of liquid inertia and
surface tension. The drop radius profile near the singularity is locally self-similar, cone-
shaped and strongly asymmetric, independently of initial or far-field flow conditions,
as reported by Chen & Steen (1997), Day et al. (1998) and Leppinen & Lister (2003).
Universality of drop breakup, and the largely asymmetrical structure of drop radius
near pinch-off is the reason underlying satellite formation observed in experiments
and numerical simulations (Eggers 1997, 2005). Nonetheless, these conclusions cannot
be applied directly to bubble pinch-off at high Reynolds numbers, which is an open
problem currently under study (Leppinen & Lister 2003; Burton, Waldrep & Taboreck
2005; Gordilla et al. 2005).

5. Conclusions
In this paper, we have reproduced some of the features of the breakup of a drop

or a bubble in a homogeneous and isotropic turbulent flow under the potential
flow approximation, assuming that, as suggested by Hinze (1955), the outer flow
pattern may be modelled as an axisymmetric hyperbolic type of flow. In the
case of bubbles, the breakup time predicted by the numerical model agrees well
with the experimental measurements given in Martı́nez-Bazán et al. (1999a) and
Rodrı́guez-Rodrı́guez (2004), once the Weber number and the correct time scale are
properly defined. In addition, the asymptotic dependence of the breakup time on
the Weber number is reached for considerably low values of this parameter, We ∼ 5.
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This constitutes a relevant result since it is the order of magnitude of the Weber
number in many practical applications such as atomization processes. However, a
limitation of the proposed model is that, at this point, our numerical approach is
unable to predict the explosive breakup caused by the interaction of a particle with
small-scale turbulent structures at high Weber numbers. Our simplified model is not
appropriate for describing the breakup mechanism reported by Risso & Fabre (1998),
who convincingly showed that the breakage of a bubble can also be induced by the
resonant interaction of vortical unsteady structures with the particle. As described in
Risso & Fabre (1998), this type of breakup is likely to occur when the characteristic
capillary time is of the order of the turnover time of the turbulent structures interacting
with the particle.

The role the inner fluid density plays in the breakup process has also been
investigated. A first result of interest, which agrees with the experimental observations
provided by Eastwood et al. (2004), is that, if the inner and outer fluid densities are
comparable, the drop deforms into a slender ligament that ultimately breaks up owing
to capillary effects. Furthermore, our numerical simulations show that the breakup
process can be divided in two different stages: a long, inertial phase, which essentially
determines the duration of the process; and a shorter capillary-driven stage that
ultimately leads to the collapse of the particle.

Finally, a simple analytical model that accurately reproduces the numerically
obtained time evolution of the drop radii in the cases of We � 1 and Λ ∼ O(1)
has also been developed.
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